Statik Belirsiz Ankastre Kiriş Problemi
(Mukavemet - II, Bütünleme Sınavı-24-2)

Problem:
Şekil 1 de gösterilen bir ucu diğer ucu basit mesnetli kirişin A ve B mesnetlerinde ortaya çıkan mesnet reaksiyonlarının tümünü hesap ediniz. En büyük sehim değerini ve koordinatlarını bulunuz. Kiriş malzemesinin elasticsite modülü 210 GPa'dır.

1. Statik belirsiz ankastre kiriş

Çözüm:
Şekil 2 gözönüne alınarak x - x kesitinde eğilme momenti denklemi

\[
M_z = M_A + R_A x - 200 \frac{(x-4)^2}{2} + 200 \frac{(x-6)^2}{2}
\]
(1)

Denge denklemleri

\[
\sum F_y = 0, \quad R_A + R_B = 200 \times 2 = 400
\]
(2)

\[
\sum M_A = 0, \quad M_A + (200 \times 2) (4 + 1) - 10R_B = 0
\]
(3)

\[
M_A - 10R_B = -2000
\]
(3)

\[
EI \frac{d^2 y}{dx^2} = M_z = M_A + R_A x - 200 \frac{(x-4)^2}{2} + 200 \frac{(x-6)^2}{2}
\]
(4)

\[
EI \frac{dy}{dx} = M_A x + R_A x^2 \frac{x^2}{2} - \frac{100}{3} (x-4)^3 + \frac{100}{3} (x-6)^3 + C_1
\]
(5)

\[
EI \frac{y}{x} = M_A x^3 \frac{x^3}{6} - \frac{100}{12} (x-4)^4 + \frac{100}{12} (x-6)^4 + C_1 x + C_2
\]
(6)

Sınırlar şartları uygulanırsa
1. \(x = 0\) da \(\frac{dy}{dx} = 0\) şartı (5) denkleminde
 \[C_1 = 0\]
2. \(x = 0\) da \(y = 0\) şartı (6) denkleminde
 \[C_2 = 0\]
 (6) denkleminde \(x = 10\) da \(y = 0\) üç şartı

Dr. M. Kemal Apalak 1
2. Dış yükler ve reaksiyonlar, singularity fonksiyonuna yüklerin uyarlanması

\[0 = M_A \frac{10^2}{2} + R_A \frac{10^3}{6} - \frac{100}{12} (6)^4 + \frac{100}{12} (4)^4 \]

\[0 = 50M_A + 166.67R_A - 8666.67 \]

\[50M_A + 166.67R_A = 8666.67 \quad (7) \]

verir. (7) ve (2) denklemleri birlikte çözülürse

\[R_A + R_B = 400 \]
\[R_A = 400 - R_B \]

\[50M_A + 166.67(400 - R_B) = 8666.67 \]
\[50M_A - 166.67R_B = -58001 \quad (8) \]

(8) ve (3) denklemleri birlikte çözülürse

\[50M_A - 166.67R_B = -58001 \]
\[M_A - 10R_B = -2000 \]

\[333.33R_B = 41999 \]
\[R_B \approx 126 \text{ N} \]

\[R_A = 400 - 126 \]
\[R_A = 274 \text{ N} \]

\[50M_A - 166.67 \cdot 126 = -58001 \]
\[M_A = -740 \text{ Nm} \]

(5) eğim denklemi

Dr. M. Kemal Apalak
\[EI \frac{dy}{dx} = -740x + 274x^2 - \frac{100}{3} (x - 4)^3 + \frac{100}{3} (x - 6)^3 \]

(6) sehim denklemi

\[EI y = -740 \frac{x^2}{2} + 274 \frac{x^3}{6} - \frac{100}{12} (x - 4)^4 + \frac{100}{12} (x - 6)^4 \]

ve (4) moment denklemi

\[M_z = -740 + 274x - 100 (x - 4)^2 + 100 (x - 6)^2 \]

olur.

![Graph](image)

3. Eğilme momentinin değişimi \(M_z \)

En büyük moment \((4 \leq x \leq 6) \) arasında \(\frac{\partial M}{\partial x} = 0 \) şartıyla aranabilir,

\[\frac{\partial M}{\partial x} = 0 = 274 - 200 (x - 4) \]

\[x = 5.37 \text{ m} \]

\[M_{\text{max}} = -740 + 274 (5.37) - 100 (5.37 - 4)^2 \]

\[M_{\text{max}} = 543.69 \text{ Nm} \]

Dolayısıyla en büyük sehim \(x = 5.37 \text{ m} \) de oluşur.

\[y_{\text{max}} = \frac{1}{EI} \left[-\frac{740}{2} (5.37)^2 + \frac{274}{6} (5.37)^3 - \frac{100}{12} (5.37 - 4)^4 \right] \]

\[y_{\text{max}} = \frac{1}{EI} (-3627.34) \]

\[y_{\text{max}} = \frac{-3627.34}{EI} \]

Ankastre kirişin eğim ve sehim değişimleri şekil 4 ve 5 de gösterilmiştir.
4. Eğimin \(\frac{EI_y}{\partial z} \) değişimi

5. Sehmin \(E I_y \) değişimi