Problem:

Şekil 2 deki değişken kesitli ankastre kirişin C ucundaki sehim ve dönüş miktarını (eğimi) bulunuz.

Çözüm:

Ankastre kirişin kademeli olması nedeni ile, \(x \leq a \) arasında eğilme, eğim ve sehim denklemleri

\[
EI_{zz} \left(\frac{d^2y}{dx^2} \right)_1 = -Px \\
EI_{zz} \left(\frac{dy}{dx} \right)_1 = \frac{P}{2}x^2 + c_1 \\
EI_{zz} (y)_1 = -\frac{P}{6}x^3 + c_1x + c_2
\]

\(a \leq x \) arasında eğilme, eğim ve sehim denklemleri

\[
2EI_{zz} \left(\frac{d^2y}{dx^2} \right)_2 = -Px \\
2EI_{zz} \left(\frac{dy}{dx} \right)_2 = \frac{P}{2}x^2 + c_3 \\
2EI_{zz} (y)_2 = -\frac{P}{6}x^3 + c_3x + c_4
\]

şeklinde yazılabilir. \(b = a + L \) olmak üzere sınır şartları

\[
x = b \text{ de } \left(\frac{dy}{dx} \right)_2 = 0
\]

\[
2EI_{zz} \left(\frac{dy}{dx} \right)_2 = -\frac{Pb^2}{2} + c_3 = 0
\]

\[
c_3 = \frac{Pb^2}{2}
\]

Dr. M. Kemal Apalak
\[x = b \text{ de } (y)_2 = 0 \]
\[2EI_{zz} (y)_2 = -\frac{P}{6}b^3 + \frac{Pb^2}{2}b + c_4 = 0 \]
\[c_4 = -\frac{Pb^3}{2} \] \hspace{1cm} (8)

\[c_3 \text{ ve } c_4 \text{ sabitleri (5) ve (6) nolu denklemlerde yerine yazılrsa II. bölge } (a \leq x) \text{ için eğim ve sehim denklemleri} \]

\[
\begin{align*}
\left(\frac{dy}{dx}\right)_2 &= \frac{1}{2EI_{zz}} \left[-\frac{P}{2}x^2 + \frac{Pb^2}{2} \right] \\
(y)_2 &= \frac{P}{2EI_{zz}} \left[-\frac{P}{6}x^3 + \frac{Pb^2}{2}x - \frac{Pb^3}{2} \right]
\end{align*} \hspace{1cm} (9)
\]

\[
\begin{align*}
\left(\frac{dy}{dx}\right) &= \frac{1}{2EI_{zz}} \left[-\frac{P}{2}a^2 + c_1 \right] \\
(y)_1 &= \frac{1}{2EI_{zz}} \left[-\frac{P}{2}a^2 + \frac{Pb^2}{2} \right] \\
c_1 &= \frac{P}{4} (a^2 + b^2) \hspace{1cm} (10)
\end{align*}
\]

\[
\begin{align*}
\left(\frac{dy}{dx}\right)_2 &= \frac{1}{2EI_{zz}} \left[-\frac{P}{6}a^3 + \frac{P}{4} (a^2 + b^2) a + c_2 \right] \\
(y)_2 &= \frac{1}{2EI_{zz}} \left[-\frac{P}{6}a^3 + \frac{Pb^2}{2}a - \frac{Pb^3}{2} \right] \\
c_2 &= -\frac{P}{6} (a^3 + b^3) \hspace{1cm} (11)
\end{align*}
\]

\[x = a \text{ da } (y)_1 = (y)_2 \]

\[1 \]

\[
\begin{align*}
\left(\frac{dy}{dx}\right)_1 &= -\frac{P}{2}x^2 + \frac{P}{4} (a^2 + b^3) \hspace{1cm} (13)
\end{align*}
\]

\[
\begin{align*}
\left(\frac{dy}{dx}\right)_1 &= -\frac{P}{6}x^3 + \frac{P}{4} (a^2 + b^3) x - \frac{P}{6} (a^3 + b^3) \hspace{1cm} (14)
\end{align*}
\]

olur. \(b = a + L \) olmak üzere \(0 \leq x \leq b \) aralığında eğim \(\left(\frac{EI_{zz}}{P} \right)_2 \) ve sehim \(\left(\frac{EI_{zz}}{P} \right)_1 \) eğrilerinin değişimleri şekil 2 de gösterilmiştir:

Dr. M. Kemal Apalak
2. \((0 \leq x \leq b) \) aralığında sehim \(\left(\frac{EI}{Pb^3} \right) \) y ve eğim \(\left(\frac{EI}{Pb^3} \right) \frac{dy}{dx} \) egrilerinin değişimleri