In Figure 3 we show a mechanism whereby a torque T acts on bevel gear A having a mean diameter of 3 in, which in turn acts on bevel gear B having a mean diameter of 15 in. A torque is thus transmitted to the vertical tube C. This tube also supports a force P, as can be seen in the diagram. What are the shear stress and normal stress over cross sections of the tube for the following data: $P = 500$ lb, $T = 300$ in-lb, $t = 0.125$ in and $D = 3$ in.

\[T = Fr_A \quad \text{and} \quad M_B = Fr_B \quad (1) \]

\[M_B = T \frac{r_B}{r_A} = 300 \left(\frac{15}{3} \right) = 1500 \text{ lb-in} \]

\[M_B = \int_A \int_A \tau_t r dA \Rightarrow \int_A \int_A \tau_t r (r dr d\theta) \]

\[M_B = \int_{r_i}^{r_o} \int_0^{2\pi} \tau_t r^2 dr d\theta = \tau_t \left(2\pi \right) \left(\frac{r_o^3}{3} - \frac{r_i^3}{3} \right) \]

\[\tau_t = \frac{3 M_B}{2\pi} \left(\frac{1}{r_o^3 - r_i^3} \right) \quad (2) \]

\[r_o = 3 \times \frac{1}{2} = 1.5 \text{ in} \]

\[r_i = 1.5 - \frac{1}{8} = 1.375 \text{ in} \]

\[\tau_t = \frac{3 \times 1500}{2\pi} \left(\frac{1}{(1.5^3 - 1.375^3)} \right) \Rightarrow \tau_t = 923.66 \text{ psi} \]

\[\sigma_n = \frac{P}{A} = \frac{500}{\frac{\pi}{4} \left[3^2 - (3 - \frac{2}{8})^2 \right]} \]

\[\sigma_n = 442.87 \text{ psi} \]

Normal stress