A friction force \(f \) acts on the surface of the cylinder as shown in Figure 2. It varies with distance from position \(O \) and is given per unit length as \(f = 10x^2 \) lb/ft with \(x \) in feet. If \(E = 10 \times 10^6 \) psi, what is the movement of \(O \) from the loading.

\[R(x) = \int f(x) \, dx = \int 10x^2 \, dx = \frac{10}{3} x^3 \]

Normal stress and strain

\[\sigma_n(x) = \frac{R(x)}{A} \quad \text{and} \quad \varepsilon(x) = \frac{\sigma_n(x)}{E} \]

Deformation

\[\Delta \varepsilon = \varepsilon(x) \, dx = \int_0^x \frac{R(x)}{AE} \, dx = \frac{1}{AE} \int_0^x \frac{10}{3} x^3 \, dx = \frac{10}{12} \frac{x^4}{AE} \]

\[A = \frac{\pi}{4} \left(\frac{3}{12} \right)^2 = 0.049087 \text{ ft}^2 \]

\[E = 10 \times 10^6 \text{ psi} = \frac{10 \times 10^6}{(\frac{1}{12})^2} \]

\[E = 1440 \times 10^6 \text{ lb/ft}^2 \]

\[\Delta \varepsilon(x) = \frac{10}{12} \frac{x^4}{AE} = \frac{10}{12} \frac{1}{0.049087 \times 1440 \times 10^6} x^4 \]

\[\Delta \varepsilon(x) = 1.178935 \times 10^{-8} x^4 \]

for \(x = 5 \text{ ft} \)

\[\Delta \varepsilon = 1.178935 \times 10^{-8} \times 5^4 \]

\[\Delta \varepsilon = 7.3683 \times 10^{-6} \text{ ft} \]