Mühendislik Matematiği Yıllık Sınavı Çözümleri
(MühMat-07-1, 20-06-2003)

1.

\[C_1 : \ x(t) = \cos t, \ \ y(t) = \sin t, \quad 0 \leq t \leq \pi \]
\[C_2 : \ x(t) = 1 - t, \quad y(t) = 0, \quad 0 \leq t \leq 2 \]

eğrilerin her biri boyunca

\[I = \int_0^\pi \left[\cos (xy) - xy \sin (xy) \right] \, dx - x^2 \sin (xy) \, dy \]
eğrisel integralini hesap ediniz.

\[\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left[\cos (xy) - xy \sin (xy) \right] = -x \sin (xy) - x \sin (xy) - x^2 y \cos (xy) \]
\[\frac{\partial P}{\partial y} = -2x \sin (xy) - x^2 y \cos (xy) \]
\[\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left[-x^2 \sin (xy) \right] = -2x \sin (xy) - x^2 y \cos (xy) \]
\[\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \]

olduğuna göre eğrisel integral yoldan bağımlı ve C_2 eğrisi boyunca eğrisel integral daha basıtlı hesaplanabilir:

\[I = \int_C \left[\cos (xy) - xy \sin (xy) \right] \, dx - x^2 \sin (xy) \, dy = \int_{t=0}^2 \cos (0) - 0 \, (-dt) - 0 \]
\[I = -\int_{t=0}^2 \, dt = -2 \]

Dr. M. Kemal Apalak